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Applications of Soft Computing Techniques in Response
Surface Based Approximate Optimization

Jongsoo Lee*, Seungjin Kim
Department of Mechanical Engineering, Yonsei University, Seoul 120-749, Korea

The paper describes the construction of global function approximation models for use in

design optimization via global search techniques such as genetic algorithms. Two different

approximation methods referred to as evolutionary fuzzy modeling (EFM) and neuro-fuzzy

modeling (NFM) are implemented in the context of global approximate optimization. EFM and

NFM are based on soft computing paradigms utilizing fuzzy systems, neural networks and

evolutionary computing techniques. Such approximation methods may have their promising

characteristics in a case where the training data is not sufficiently provided or uncertain

information may be included in design process. Fuzzy inference system is the central system for

of identifying the input/output relationship in both methods. The paper introduces the general

procedures including fuzzy rule generation, membership function selection and inference process

for EFM and NFM, and presents their generalization capabilities in terms of a number of fuzzy

rules and training data with application to a three-bar truss optimization.
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1. Introduction

There have been significant recent applications

of formal optimization methods in industry level

engineering design problems (Sobieski et al.,

2000). In simulation-based design, an optimum

solution is obtained through iterative search pro­

cess of an optimizer in conjunction with finite

element analysis and/or CAE tools. Modern

optimization techniques employ the state of the

art response surface methods (RSM) for savings

in computational resource requirements (Carpen­

ter and Barthelemy, 1993; Roux et al., 1996; Lee

and Hajela, 2000). RSM is especially efficient

when the optimization is performed based on

experimental design data. Highly reliable RSM

could be established by an optimal number of
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design data obtained from the design of

experiments via analyses of variance (Giunta et

al., 1997; Kim and Kang, 2000). Neural network

based global function approximations may be

used as alternatives when global search strategies

such as genetic algorithms (GA's) and/or

simulated annealing are adopted (Hajela and

Berke, 1992; Hajela and Lee, 1995; Lee and

Hajela, 1996). In practical situations where, for

example, dynamic responses pertinent to noise

and vibration are calculated via an unsteady finite

element analysis or a single execution of

experiment is expensive, one must develop ap­

proximation models using an insufficient number

of design data within a limited time frame of

product development. In such cases, both

polynomial based RSM and neural networks may

generate poor generalization capabilities due to

their requirements of a considerable number of

input-output training data.

The paper proposes the application of fuzzy

inference systems (FIS) in constructing global

function approximations for subsequent use in

design optimization when the number of design
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2. Fuzzy Inference Systems

In the above, A and B are the linguistic values

of the input variable x and the output variable y,

respectively. The if-part of the rule "x is A" is

called the antecedent or condition, and the then­
part of the rule"y is B" is called the consequent

or action. In the case of boolean logic, if the

antecedent part of the if-then rule is true, then the

of global approximate response surface (in design

optimization) as the modeling and identification

of nonlinear systems (in controls). The present

study proposes EFM and NFM for global func­

tion approximation for use in the optimization of

nonlinear structural systems when the number of

training data and their quality are of concern. The

present paper examines their generalization

capabilities in terms of fuzzy rules and training

data for a three-bar truss design problem, and

extracts the prospective characteristics from such

approximation methods for further extensive

applications.

The fuzzy inference system (FIS) is a

computing framework based on the traditional

concepts of fuzzy set theory, fuzzy if-then rules

and fuzzy reasoning (Jang et aI., 1997). The fuzzy

logic and fuzzy inference system have been widely

applied in the area of control systems design, and

have also received recent attention in

multiobjective optimization of structural and

mechanical systems. The basic structure of FIS

consists of three components: fuzzy rules are

expressed by linguistic rule base information,

fuzzy membership functions are introduced to

represent a set of fuzzy rules, and a reasoning

mechanism performs the inference procedure up­

on the rules and given facts to derive a reasonable

output or conclusion.

Using fuzzy sets, the linguistically expressed

rules can be defined for a given set of input and

output variables. The fuzzy rules use the condi­

tional statements of if-then rules. For example, a

standard fuzzy if-then rule assumes the following

form:

(1)If x is A, then y is B.

data for training response surface models is not

enough. Two different methods using FIS are

discussed: one is evolutionary fuzzy modeling

(EFM) and the other is neuro-fuzzy modeling

(NFM). Building an optimal and robust fuzzy

model has a critical effect on the performance of

the fuzzy logic. EFM (Satyadas and

KrishnaKumar, 1994) is an optimization process

to determine the types of membership functions

and their parameters of interest by adapting fuzzy

rules, where the optimization process is

performed by evolutionary computing methods

such as genetic algorithms. When the training

data is of the type of fuzzy rules, a function

approximation model should be obtained by

determining the optimal parameters for input and

output membership functions that describe the

conditions and actions in fuzzy rules, respectively.

Therefore, GA's will treat a set of membership

function parameters as design variables and

evolve them until the error between defuzzified

outputs and actual target values is minimized.

NFM is another adaptive system identification

model (Jang, 1993) wherein a neural network­

like architecture is constructed from a number of

fuzzy rules that are to be expressed by fuzzy

membership functions and polynomials to repre­

sent nonlinear behaviors between neurons of each

layer; it should be noted that membership

parameters could be optimally adjusted as well.

EFM and NFM belong to a category of soft

computing (SC) utilizing fuzzy systems, neural

networks and evolutionary computing. Soft

computing is an emerging approach to computing

which parallels the remarkable ability of the hu­

man mind to reason and learn in an environment

of uncertainty and imprecision (Zadeh, 1992); SC

enables to incorporate human knowledge

effectively, deal with imprecision and uncertainty,

and learn to adapt to unknown or changing

environment for better performance (Jang et aI.,

1997). Such approach received promising atten­

tion in analysis and design of nonlinear systems

in the context of adaptive control (Takagi and

Sugeno, 1985; Yamakawa, 1992), learning process

(Berenji and Khedkar, 1992), and artificial life

(Sipper, 1995). One may consider the construction
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consequent part of the if-then rule is also true.

However, the fuzzy if-then rules do not operate in

the same manner since they use the fuzzy state­

ment. Instead, in fuzzy if-then rules, if the ante­

cedent is partially true to some degree, then the

consequent is also partially true to that same

degree. If-then rules can also have more than one

part in both the antecedent and consequent. In

this case, all antecedent parts are calculated sim­

ultaneously that generate a single value by using

the logical operators. This results from the ante­

cedent part and affects all the consequents equally

by an implication function.

The definition of a fuzzy set is a simple

extension of the definition of a classical set in

which the characteristic function is permitted to

have any values between 0 and 1. From the

definition of a fuzzy set, for example, the linguis­

tic values of the input variable in the antecedent

in Eq. (1) could be expressed as a set of ordered

pairs:

where f..!A(X) is called the membership function

for the fuzzy set A. The membership function can

be selected as any arbitrary curve according to

one's subjective perception based on the behavior

of a function. One can introduce such member­

ship function to the consequent as well. It should

be noted that the basic FrS can take either fuzzy

inputs or crisp inputs, but the outputs it produces

are almost always fuzzy sets. It is necessary to

have a crisp output, especially in a case where FIS

is used as a decision-making device. Therefore, a

method of generating an aggregated decision val­

ue, referred to as defuzzification, is needed to

extract a crisp value that best represents a fuzzy

set. The procedure for fuzzy rule aggregation and

subsequent defuzzification is summarized for

completeness.

Consider a case where a number of fuzzy rules

are made of more than one part in the antecedent

and a single part in the consequent. For each of

fuzzy rules, all antecedent parts are calculated

simultaneously to generate a single value by using

the logical operators; this process results from the

antecedent parts, and then affects the consequent

A={(x, f..!A(X» IxEX} (2)

Fig. 1 Fuzzy inference system

equally by an implication function. The de­

fuzzification is then performed based on the mul­

tiply aggregated values of output fuzzy sets from

each of fuzzy rules. When the maximum method

as an implementation of aggregation process is

considered for example, the order in which the

rules are aggregated does not matter for more

than two output fuzzy sets due to its commutative

characteristics in aggregation. The aggregation of

two output fuzzy sets returned by the implication

process generates another fuzzy set. In order to

extract useful information from newly aggregated

fuzzy set, it must be defuzzified to obtain a single

value as well. Although the conversion of a fuzzy

set into a single crisp value is possible in several

different ways, the present study adopted the

centroid method to calculate the center of a region

generated by all aggregated output fuzzy sets. FrS

with a crisp output is shown in Fig. 1, where a

basic FIS transforms an aggregated output fuzzy

set into a single crisp value.

3. Evolutionary Fuzzy Modeling

EFM employs evolutionary algorithms to

evolve the fuzzy model of a nonlinear and/or

multimodal system. The general approach to

using any parameter optimization technique for

fuzzy modeling has been to tune the parameters of

predefined rules. Both antecedent and consequent

are expressed by fuzzy membership functions in

EFM. In the present study, genetic algorithms are

used to evolve near-optimum fuzzy membership

parameters and fuzzy rule structure through an

iterative procedure using appropriate perform­

ance index and available system information.

Building an optimal and robust fuzzy model has
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Fig. 3 Architecture of neuro-fuzzy modeling
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4. Neuro-Fuzzy Modeling

the set of membership parameters generating the

most accurate approximation. The general proce­

dure for EFM based optimal membership

parameter extraction is shown in Fig. 2.

Neuro-fuzzy model adopted in this work is

based on the original version of the adaptive

network-based fuzzy inference system, referred to

as ANFIS. NFM is a class of adaptive networks

that are equivalent to fuzzy inference systems

whose basic architecture is mostly similar to

backpropagation neural networks. This system

utilizes a hybrid learning rule to optimally tune

the fuzzy system parameters of a fi~st order

Sugeno model (Sugeno and Kang, 1988); the

consequent part in fuzzy rule is represented by a

first order polynomial that is a linear function of

input design variable(s), while the antecedent

parts are described by a parameterized member­

ship function. Assume that a couple of fuzzy rules

for two inputs xl and x2, and one output yare

expressed as follows (Hines, 1997):

If Xl is Al and xz is BI , then Y = PIXI +aix«+ rl

If XI is A z and Xz is B« then Y =PzXI +qzXz+ rz

(4)

where A's and B's are linguistic expressions for

input variables, and p's, q's and r's are constant

coefficients in the consequent part. The basic

NFM architecture consisting of the aforemen­

tioned fuzzy rules is shown in Fig. 3. It should be

noted that the architecture has 5 layers between

input variables and output response, and each

layer has a number of nodes depending on the

ts( )npu XI Outputs( YJ ). -I Fuzzy Inference System I .
! .

Detamining t
Membership function parameters

Genetic Algorithms
F = (1/n) L:[ YJ - tJ]2

Fig. 2 Schematic of evolutionary fuzzy modeling

a critical effect on the performance of the fuzzy

logic. In order to tune a fuzzy model, EFM

approach is introduced in the present study. Even

though the type of membership functions and the

number of rules can be varied during the GA

evolution, the only tuning parameters in this

work are membership parameters used to define

the shape of each membership function. It should

be noted that the additional consideration of

selecting the type of membership functions prod­

uces more intelligent EFM framework, however,

resulting in the increase in the computational

costs during the GA based optimization process.

GA's will treat a set of membership function

parameters as design variables and evolve them

until the error between defuzzified outputs and

actual target values is minimized.

The GA based optimization statement for

optimal tuning of a model with m number of

inputs (the number of input and output member­

ship parameters) and n number of outputs (the

number of training data) can be written as follows

(Kim and Lee, 1999):

... E 1~ znummize EFM=- ,.t•...(Yj- tj ) (3)
nj=l

subject to V/:::;;'Vi:::;;'VP, i=l,"', m

The objective function in EFM was considered

as the mean square error between the predicted

output, Yh and the actual output, t; As

mentioned earlier, the approximated value Yj is

evaluated through the input and output member­

ship functions for the antecedent and consequent,

respectively. The design variables in this ap­

proach are membership function parameters, lim­

ited by proper lower and upper bounds. It should

be noted that each design variable represents a

parameter that defines the membership function.

The optimal solution for this design problem is
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5. Design Problem

(5)

H=lH=l I-+-----.....-----.

...../
P=20 P=20

Fig. 4 Three-bar planar truss

H=!

forward pass is stated as follows:

... E {!,l( t)2mmrrmze NFM= t12 vc: i

subject to v/5:.vj5:.vl, j=I,. ..,m

The squared error is taken as an objective

function, where N denotes the number of training
data and m is the number of input parameters in
antecedent parts, while yi and ti represent the

approximate output obtained through Layer-S
and actual output, respectively. This optimization

process is conducted via the gradient based search
method, constrained by lower and upper bounds
on input membership parameters.

A three-bar planar truss problem is explored as

a test bed to support the proposed strategies of
EFM and NFM. Consider the three-bar truss

problem with two cross sectional areas 51 and 52

as design variables as in Fig. 4. The objective is to
minimize both the weight of the structure and the
vertical displacement subjected to constraints on

static stresses. The mathematical statement of this
optimization problem can be written as follows:

minimize /(5)=( :* -1r+( ;* -Ir (6)

subject to 0"1(51, 52) 5:.20.0
0"2(51, 52) 5:.20.0

0"3(51,52)5:.-15.0

0.15:.5;5:.5.0, i=l, 2

where the multiobjective function in Eq. (4)

includes two components of the weight of the
structure Wand the tip deflection 8, where W*
and 8* denote the corresponding optimal objec-

number of rules and their antecedent parts. A

brief summary of how NFM is established is

explained for completeness.
Layer-I: Generate the membership function for

each of the antecedent parts. It should be noted

that the membership function parameters are
design variables during the backward pass of

NFM.
Layer-Z: Create the rule strength between ante­

cedent parts; each node output represents the

firing strength of a rule. At this point, any T­
norm operators that perform fuzzy AND' can be

used as the node function in the layer.
Layer-3: Normalize the firing strength of a

rule. The i-th node calculates the ratio of the i-th

rule's firing strength to the sum of all rule's firing
strengths.

Layer-4: Compute the rule in consequent part.
The Sugeno representation in the i-th rule is

multiplied by the i-th rule's normalized strength
ratio. The polynomial coefficients are design
variables in the forward pass of NFM.

Layer-S: Sum all the rules obtained up to Layer-

4. The single node in the layer is a fixed node that
computes the overall output as the summation of
all incoming signals.

NFM is a tuning process to optimize both
membership function parameters in antecedent
parts and Sugeno coefficients in consequent parts

using separate optimization strategies. That is,
two-pass procedure in hybrid learning ofNFM is
considered; the forward pass determines

polynomial coefficients with the antecedent mem­
bership parameters fixed, while the backward
pass may use any optimization methods to obtain
the best combination of membership parameters

holding Sugeno coefficients fixed. Since NFM
adopts two different optimization procedures to

reduce the error between the actual response value
and the approximate value, the training rule is
called hybrid. In the present study, the consequent

coefficients are obtained via singular value
decomposition (Golub and Van Loan, 1989), and

the antecedent parameters are updated by
back propagating the existing errors as usually

done in gradient based backpropagation neural
networks. The optimization process during the
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Table 1 Fuzzy rules generated by 9 design data

6. Results and Discussion

rule. Figure 5 shows a graphical representation of

the second stress level 62 with respect to design

variable. From this figure, one of fuzzy rules

describing 62 in CASE-l can be expressed as

follows :

If SI is small and S2 is small, then 62 is very large.
(7)

After the visual observation of all the response

function values, a total of 36 rules are generated

as shown in Table I. Fuzzy membership functions

for input variables and/or output responses are

selected based on their changes in magnitude. In

the present study, a Gaussian membership func­

tion is usedto describe the behavior of individual

input design variable. Two different types of

membership functions are applied to model the

output responses; a triangular membership func­

tion is used when the individual output value is

obviously different from adjacent values, while

trapezoidal membership functions are employed

in a case where more than two response values are

considered to be located within a moderate range

of magnitude. Consider the second case (CASE­

2) such that fuzzy rules are generated from 16

design data. Design points are selected at 0.1

(small), 1.7 (less small), 3.3 (less large) and 5.0

(large) for each design variable, resulting in a

total of 16 design data that establish the same

number of fuzzy rules available. The idea of how

input/output fuzzy membership functions are de­

termined in this case is the same as that in the

previous case.
Genetic search based optimization of the three­

bar truss problem is conducted using the EFM

based global approximation model. Two cases,

CASE-l and CASE-2 employ a number of sets of

training data to enhance the generalization

capability. Table 2 shows the optimized objective

function values according to the number of train­

ing data, which are evenly selected over the entire

design space as well. An increase in the number of

training data produces more accurate solution in

both cases, as expected. CASE-2 of 16 rules is

better than CASE-I of 9 rules , which implies that

the number of fuzzy rules is more critical than the

number of training data in generalization; EFM

0.1
2.5

51

Fig. 5 Levels of £12 from 9 design data

5

tive function values obtained from single objec­

tive design problem.

6.1 Approximation by EFM

Suppose that four different response functions

such as the vertical displacement (3) and three

stress levels (61, 62, and (3) need to be
approximated, while the weight of the structure is

easily obtained by a simple equation. In EFM, an

initial number of design data is necessary to

establish the fuzzy rules. One can first establish

the fuzzy rules using 9 design data that are evenly

selected from an entire design space , referred to as

CASE-I; design points are chosen at 0.1 (small),

2.5 (medium) and 5.0 (high) for each design

variable, resulting in a combination of 9 design

data; each of design data corresponds to a fuzzy

a £11

~ 5 M H
52

5 M H

S VLA LA LO VLA I LA LA

M LA LA LO LO LO LO

H LA LO LO VLO LO VLO

(h £13

~ 5 M H
52

5 M H

5 VLA LA LO LO LO VLO

M LA LA LO VLA VLA VLA

H LA LO LO VLA VLA VLA
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Table 2 EFM based optimization results

------- 9 rules 16 rules

# of data W' 8* W* 8*

9 10.52 7.23 - -

16 7.62 6.91 7.03 4.92

25 6.68 5.25 5.21 3.79

36 6.23 4.74 5.19 3.74

49 5.47 4.11 5.17 3.69

64 - - 5.14 3.65

Exact
W*=5.12, 8*=3.63

Solution

by 16 rules with 25 training data locates approxi­

mate values that are close to exact solutions, while

a case of 9 rules with 49 data is still very off.

6.2 Approximation by NFM

Neuro-fuzzy modeling requires a greater num­

ber of initial training data compared to

evolutionary fuzzy modeling since each of rules in

NFM has 3 coefficients in the consequent part as

shown in Eq. (4). For example, CASE-l with 9

rules has a total of 27 coefficients, which implies

that at least 27 training data is necessary to

perform the SVD procedure. CASE-l and CASE­

2 that were used in EFM are also applied to NFM

without imposing the output membership

functions on the consequent parts; Gaussian

membership functions are considered to express

the antecedent parts of fuzzy rules in NFM.

Solutions by NFM based global approximate

optimization are shown in Table 3 in terms of the

number of rules and the number of training data.

As in the case of EFM, the accommodation of

larger number of rules and larger number of

training data improves the generalization

capability. From results in Tables 2 and 3, EFM

and NFM are similar to each other when CASE­

2 of 16 rules with 49 or 64 training data is

compared. However, EFM using CASE-l of 9

rules with 36 or 49 training data is better than

NFM under the same conditions. That is, both

EFM and NFM generate reliable approximate

solutions when a large number of design data is

available. EFM is more efficient than NFM in a

Table 3 NFM based optimization results

------ 9 rules 16 rules

# of data W* 8* W' 8*

36 6.54 5.01 - -

49 5.59 4.23 5.19 3.71

64 - - 5.14 3.64

Exact
W*=5.12, 8*=3.63

Solution

Table 4 Number of tuning parameters for (52

~
9 rules 16 rules

EFM NFM EFM NFM

antecedent 12-G 12-G 16-G 16-G

consequent
3-TR

27-S
3-TR

48-S
8-TZ 12-TZ

total 23 39 31 64

case where the design data is not sufficiently provided.
Another advantage of EFM is that when the fuzzy
model should be optimally tuned, it requires a smaller
number of design variables (membership parameters)
than NFM as shown in Table 4; the number of
parameters for modeling the second stress level (52 is
presented, where G, TR, and TZ denote Gaussian,
triangular, and trapezoidal membership functions, re­
spectively, and S represents the linear Sugeno model.
However, EFM employs the membership functions to
express the consequent parts, thereby increasing the
degree of complexity such that what kind of member­
ship function should be considered; the quality of
system modeling and identification is subject to the
choice of the membership function as well.

6.3 Comparison between EFM and NFM
It is necessary to compare the approximated re­

sponse functions obtained from EFM and NFM; for
detailed implication, the paper examines the predicted
behaviors of (52 as a representative. Figs. 6 through 8
demonstrate the global approximation by EFM and
NFM with 9 rules. Figure 7 shows more improved
results compared to Fig. 6; the use of a large number
of training data facilitates to tune the membership
parameters more effectively, resulting in more accurate
generation of approximated response. Figure 8 is a
result done by N FM using 49 training data; this result
is comparable with that from EFM in Fig. 7, but one
can realize that NFM result follows the linear fashion
due to the use of the linear Sugeno model. Such
approximation results can be interpreted in terms of
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Fig. 6 EFM result using 9 rules and 9 data
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Fig. 11 Input MF using 9 rules and 49 data in NFM

optimized membership functions as well. Figures 9
through II are optimal input membership functions
for a cross sectional area, 5,. It should be reminded
that a Gaussian membership function is used to rep­
resent the antecedent parts. In Fig. 9, three rules have
been tuned using only 3 training data that are selected
at the 5, axis, thereby resulting in the even distributi­
on of each membership function over the bound on
design variable, 0.1<5, <5.0; each training data
should take care of each rule. On the other hand, the
use of more training data (in Fig. 10) produces uneven
distributions in membership function locations; one

or two out of 7 training data tune the membership
functions representing small' and high', while most of
the training data are used to optimize the medium'
membership function. NFM result in Fig. II is almost
similar to EFM result in Fig. 10.

Results by the use of 16 rules are also presented in
Figs. 12 to 14. They show the compatible trends in
result as in the case of9 rules; especially NFM with 16
rules in Fig. 14 becomes almost nonlinear around the
peak value of 152 due to the increase in the number of
rules. Optimized output membership functions ac-
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EFM result using 16 rules and 16 data
Fig. 15 Output MF using 9 rules and 9 data in EFM
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Fig. 14 NFM result using 16 rules and 64 data
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function results may produce corresponding approxi­
mations of 0'2 in Figs. 6 and 7. When 16 rules are used,
similar results are obtained for optimized output
membership functions as shown in Figs. 17 and 18.

Throughout the numerical experiments in both
EFM and NFM, the present paper may be summa­
rized as follows: the success in fuzzy logic based
global response modeling depends on the number of
fuzzy rules to describe the system behavior, the type of

.10.1t2

100

80

cording to the number of rules and the number of
training data are shown in Figs. 15 through 18. As
mentioned earlier, triangular and trapezoidal
functions are employed to describe the consequent
parts when the approximation is conducted via EFM.
In comparison between Figs. 15 and 16, one can detect
the major difference in coverage of membership
function; low' membership function in Fig. 15 fills in
most of output region since 9 training data is not
enough to represent the realistic response, while in the
case of 49 training data as shown in Fig. 16, most of
response function values are approximated to locate at
the highest and smallest. Such output membership
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7. Closing Remarks

Fig. 18 Output MF using 16 rules and 64 data in
EFM

membership functions to realize the fuzzy expressions,
the number of training data to tune the membership
parameters, and the optimization strategies to
minimize errors between actual and predicted
responses.

The paper explores the applications of fuzzy
inference systems in modeling global function
approximations for use in design optimization. A
minimal number of design data is selected from an
entire design space to generate the fuzzy rules
describing the input-output relationships in the glob­
al nature. An increase in the number of training data
enhances the generalization capability in both EFM
and NFM. EFM is more efficient when the design
data is not sufficiently provided. NFM in the present
study employs the first order Sugeno model; such
method is easy to implement, and works well with a
smaller number of membership functions during sys­
tem modeling. Main drawbacks of NFM reside in the
fact that it necessitates a greater number of training
data to determine the coefficients of polynomial in the
consequent parts. Through the numerical experiments
in both EFM and NFM, the present paper points out
that the success of response modeling depends on the
number of fuzzy rules to describe the system behavior,
the type of membership functions to realize the fuzzy
expressions, the number of training data to tune the
membership parameters, and the optimization strate­
gies to minimize errors between actual and predicted
responses. For further study, data clustering technique
for automatic fuzzy rule generation scheme is
underway to improve the modeling quality.
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